Для чего нужен резистор вентилятора охлаждения

Наступил второй месяц лета, теплая погода пробивается сквозь каждодневные дожди и сильные ветра. Вообще, это лето какое-то аномальное — снег в мае, ураганы и дикие ветра, в Москве срывает крыши, а большинство городов Урала находятся в плену дождей, и как следствие автомобили не ездят, а плавают… Но речь сегодня не об этом, а о том, как я столкнулся с проблемой, которую сам себе придумал, но как выяснилось в итоге — попал в яблочко.

Эта история началась в начале мая, когда первые теплые деньки заставляли молотить вентилятор охлаждения автомобиля с неимоверной скоростью. По классике жанра — пока проблема меня не касается, я не особо разбираюсь в определенном узле, но как только у меня возникают вопросы, я тут же начинаю штудировать форум, изучая информацию, пока на мои вопросы не будут даны устраивающие меня ответы. Так получилось и в этот раз — я стал замечать, что вентилятор "гудит" очень часто, и меня это стало напрягать, потому что в прошлое лето я такого не наблюдал.

Первым делом проверка через программу FORScan Lite, благо у меня есть диагностический адаптер ELM327. Смартфон показал, что вентилятор у меня включается при температуре 115°C. Мне показалось это через чур "тепло", и я начал далее проверять температуру, но все программы показывали одно и тоже — температура включения вентилятора всегда одна и та же, будь то в движении или на холостом ходу.

Самое интересное, что тестовый режим приборной панели показывает температуру ровно на 13 градусов ниже, т.е. если ELM327 считывает с датчика температуру включения вентилятора 115°C, то приборка в это же время будет показывать 102°C и нужно учесть, что работают они синхронно — почему так? На этот вопрос я так и не нашел ответа (ВНИМАНИЕ! Ответ найден!). Однако я больше верю показаниям диагностического адаптера, нежели приборной панели (и зря я так думал…)

Но только потом в нашей группе ВК мне сказали, что вентилятор имеет две скорости, вторая скорость включается через реле напрямую, а за первую скорость отвечает реле и наш главный герой сегодняшней записи — терморезистор с дополнительным сопротивлением. И тут все встало на свои места, после проверки вентилятора через ноутбук и программу FORScan выяснилось, что вентилятор у меня срабатывал лишь на второй скорости. Первая скорость у меня отсутствовала, и вместо нее была тишина)

По мануалу как таковых точных температурных данных нет, у всех разные двигатели и разные прошивки ЭБУ (PCM), поэтому и температуры включения тоже у всех разные. Многие путают показания тестового режима и данные с ELM327, возможно поэтому такой разброс в температурах — от 98°C до 120°C. Но я буду писать исключительно про Zetec 1.8 Всеволожской сборки, основываясь на собственном опыте.

Радиатор охлаждает всего один большой вентилятор (у многих стоят парные вентиляторы, в том числе и на питерской сборке, однако почему и зачем последние года ставились одиночные крыльчатки — тоже загадка), который имеет 2 скорости вращения:

1 скорость (on 109°C, off 105°C) — включается через реле, скорость вращения крыльчатки понижается дополнительным сопротивлением (спираль) в 0,43 Ом, в случае заклинивания вентилятора нагревается спираль и при достижении определенной температуры резистор сгорает, размыкая цепь. Что и произошло в моем случае — как давно это было уже никто не скажет, возможно месяц назад, а может и лет 8 уже минуло с последней поездки в Краснодар, где в +50°C вентилятор крутился просто сутками.

2 скорость (on 115°C, off 112°C) — включается также через реле, скорость вращения крыльчатки максимальная, из-за этого вентилятор очень хорошо слышно даже в салоне. Остужает ОЖ на 3°C и затихает.

Еду как обычно с работы домой и вижу, что БК показывает 95 градусов. Как бы при 93-ех должен был включится вентилятор радиатора на первой скорости и сдуть температуру до 87.
проверяю реле, просто замкнув силовые контакты — вентилятор молчит. при этом при 100 градусах он запускается на полную мощность без вопросов.
при 93 градусах ЭБУ даже обороты двигателя подбрасывает заранее, предполагая, что сейчас включится вентилятор.
А датчик указателя температуры(на приборке который) от Тико молодец, реагирует шикарно. При 100 градусах очень заметно кренит стрелку вправо, к красной зоне. Видно ли при штатном датчике подобное не знаю. Думаю нет! Возможно поэтому и не знают о том, что резистор уже умер. Просто вентилятор срабатывает только при 100 градусах, сразу на вторую ступень . А это случается редко, если хоть немного движешься. Встречным потоком воздуха тепло сдувает нормально. Но при этом тепловой режим у мотора и всего, чтопод капотом повышенный и явно это не на пользу. так что проверьте резистор. Делов то, под капотом вынуть одно реле и тыкнуть скрепкой. Но надо знать куда. )))
Итак:
Питание на реле есть, предохранитель целый. Между вентилятором и реле стоит резистор. Под левой фарой белый брусок с проводами. На вид абсолютно целый. Стоило чуть его тронуть, как он развалился на части.

Читать дальше:  Шевроле реззо тест драйв видео

Для простоты, временно, можно соединить остатки проводов, т.е. просто исключить резистор из схемы. ничего не случится. Будет срабатывать при 93 сразу на полную мощность.
Я просто заизолировал и оставил до выходных, т.к. первое, погода прохладная и мотор не успевает нагреваться до 100 градусов, пока на работу и обратно еду, если что при 100 градусах включится вторая ступень, и второе, у меня выведен провод от датчика температуры, сделан шунт и я могу принудительно имитировать повышение температуры до 102-105 градусов. при этом ЭБУ включает вторую ступень вентилятора-на полную мощность. я всегда могу сдуть лишнее тепло вручную.
покупать новый резистор за 500 рублей не захотел по двум причинам: цена на нравится и есть шанс повторения.
ну и если что — купить всегда можно. оригинал 94580776 или 94812213 или многие аналоги.

поиск по номеру детали тут же выдал ссылку на www.drive2.ru/l/6016408/ с подобным случаем. ))
извлек нужные сведения и сделал поправки.
штатный резистор на 15Вт не похож размерами, но зато узнал про примерную выделяемую мощность на нем без собственных измерений. штатный резистор — 0,6 Ом.
я купил два резистора SQP 20 Вт 1.2 Ом, 5%, Резистор проволочный мощный (цементный) (цена вопроса оказалась по 2 х 11р., правда вкупе с другими покупками. в любом случае думаю не более 50-60р.)
вырезал кусочек двустороннего стеклотекстолита, припаял пару лепестков. Можно отформовать выводы и просто к поверхности припаять. паять провод в машине прямо к резисторам не вариант — от вибрации оторвет тут же.
Двусторонний стеклотекстолит взял из соображения лучшей теплопередачи вниз.(под руку он попался. )) ) Лепестки припаял, так что нижняя сторона электровыводов не имеет. На верхней сначала сделал два "пропила"

Вокруг лепестков снял медь, чтобы меньше было вариантов попадания плюса на кузов )))
резисторы дополнительно закрепил кусочком железяки (раньше она закрывала окно привода CD-ROMa в корпусе компа). на тяговую заклепку. головкой снизу, конечно.

Снял накладку поворотников — "очки", и фару. так как то и работать просторнее и светлее.

закрепил перфорированной монтажной лентой и винтиком М5. Не доверился саморезу.

Мощность двух резисторов 40 Вт. По уже своим замерам (простым мультиметром) через новый резистор течет 5,3 А. на них падает около 3,4 В, при питании 14,5. Сопротивление расчетное получилось 0,64 Ом. По номиналу планировалось 0,6, так что всё правильно. Выделяемая мощность 18 Вт. запас двукратный. Двухминутная принудительная работа вентилятора через резистор не выявила его нагрева вообще. Но температура воздуха была около 5 градусов.

Что самое приятное я успел поставить этот резистор в воскресенье 27 декабря, в аккурат перед началом предновогодних пробок, когда пришлось по часу добираться до дома, хотя там 15 минут ехать. Вентилятор работал сам и не приходилось следить за температурой и включать/выключать вентилятор тумблером.
О причинах судить сложно. У меня он отходил 4 года. У Сергея MTZ на трехлетней машине сдох. www.drive2.ru/l/8571354/, что его удивило.
Внимательные могут сказать: — У тебя же термостат на 88 градусов. www.drive2.ru/l/4744253/ .
Им возражу, что температура срабатывания вентилятора 93 градуса и находится она за пределами открытия термостатов, т.е. когда термостат уже давно открыт и прогрелся весь большой круг, с радиатором. иначе смысл через него дуть? т.е. температура мотора уже не зависит от термостата.
Невеликое отличие, что после поездки по трассе температура мотора сначала была бы штатно 80-82, а тут 85-87 и остановившись в пробке она чуточку быстрее достигла 93 градусов, но это несерьезно. совсем. ))

Всех с новым годом! Удачи во всем и поменьше оленей на дорогах!

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относиться к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получиться. А в любом автомобиле электрических цепей при достаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Читать дальше:  Распиновка k line адаптера

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это . Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Читать дальше:  Ремонт мазда б 2500

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,1 2 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

admin
/** * The template for displaying comments. * * The area of the page that contains both current comments * and the comment form. * * @package xMag * @since xMag 1.0 */ /* * If the current post is protected by a password and * the visitor has not yet entered the password we will * return early without loading the comments. */ if ( post_password_required() ) { return; } ?>

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *